

Physics-Grounded Differentiable Simulation for Soft Growing Robots

Lucas Chen, Yitian Gao, Sicheng Wang, Francesco Fuentes, Laura H. Blumenschein, Zachary Kingston

Introduction

- → Vine robots are soft tubes that extend when inflated
- → Unlike tradition rigid body robots, obstacle collisions are not explicitly avoided and even sometimes encouraged
- → How can we model vine robot behavior in contact-rich environments?
- → Accurate models are complex, but simple models, while fast, fail to capture realistic behavior
- → Such behaviors (e.g. bending, buckling, contacts) are highly nonlinear, preventing closed-form solutions
- → We propose a batchable, differentiable simulator for gradient based optimization

Notice how inflated tubes tend to buckle rather than curve. Rigid segments cause the body to push off inside wall

Differentiable Simulation

Bending Stiffness Function

- → Other simple models use spring constants for linear stiffness
- → Outer tube is inextensible (unable to stretch), but air inside can be compressed, causing vine overall to be deformable
- → At low bend angles, energy is distributed along curvature
- → At high bend angles, wrinkling of tube causes buckling: energy is dispelled due to wrinkle
- → We propose an empirically derived nonlinear stiffness model capable of predicting buckling behavior

$\tau = k\theta + c\dot{\theta}$ Top: Damping coefficient resists large changes in bend angle Bottom: model of vine wrinkling and nonlinear stiffness (a) Length Change (b) Constant Moment Approx TPR^3 Vrinkled (a) Length Change (b) Constant Moment Approx TPR^3 Rending Angle 8 17/2

of simulation needed for planning and optimization

Experiments

Linear

MLP

Ours

- → Tested three bending models: linear, MLP learned, and proposed analytical model
- → Key metric: MSE loss to measure pose deviation from real data

Future (Current) Work

- → Differentiable simulator allows for inverse problem solving via gradient propagation.
- → Currently working on planning with pre-determined curves, i.e. actuators don't change bend angle during growth
- → Design optimization for deformable vines to exploit vine-obstacle contacts for low cost fabrication.

Video Parser

Batched Rollout Testing

Visualization of batched rollouts

→ Tested speed on batchable rollouts

Conclusion

- → We introduce a new bending model to explain the complex contact behavior of vine robots
- → Our approach enables direct gradient-based parameter estimation for system identification
- → Our stiffness-based approach achieves superior accuracy compared to fast, simple models while its batchable design runs faster than explicit contact models
- → It improves both performance and gradient accessibility on the Pareto frontier of simulators

Our lab website: commalab.org

(a) Inertial Constraint: next

frame must follow velocity

(b) Connection constraint:

(c) Collision constraint: don't

(d) Objective: minimize rotation

joints must connect

penetrate obstacles